
1. Introduction

In studies of the population ecology of
birds, collections of species are often the
subject of analyses. In North America,
population change and abundance of
groups of species that share a common
characteristic such as migration status (e.g.
Neotropical migrants) or breeding habitats
(e.g. grassland birds) have been the subject
of much public interest due to perceived
declines (e.g. Peterjohn & Sauer 1999,
Robbins et al. 1989). Furthermore, conser-
vation initiatives focus on taxa such as
waterfowl (e.g. the North American
Waterfowl Management Plan), shorebirds,
or colonial waterbirds that share a common
life history characteristic. Managers are

interested in summarizing information for
these taxa, and may use the collective
response of all species as a response mea-
sure for management. 

A common summary of group popula-
tion change, or an interval-specific trend,
is often of primary interest to managers.
The average population trend, number of
“declining” species, number of species
with significant trend estimates, ranks of
species by population trend, and lists of
species with extreme changes are often
presented for groups (Link & Sauer 1995).
Managers also seek to identify species
whose populations are unstable or chang-
ing. In this paper, we discuss some of the
difficulties associated with summary of
attributes of groups of species. Our focus
is on summary of collections of estimates
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of population trend, but the hierarchical
model approach we describe can be used
for many attributes. A more complete dis-
cussion of the models and methods used in
this paper is available in Sauer and Link
(2002).

1.1 Are Summaries Meaningful?

The fundamental notion associated with
summary of group attributes is that the
collection of species is meaningful, in that
some common characteristic of the species
permits summary of population attributes
among species. Often, conceptual and
practical difficulties exist with any sum-
mary. Practical concerns include the prob-
lem that quality of information may vary
greatly among species; simple averages
and summaries of estimates can be mis-
leading. Conceptual difficulties are based
on the notion that all species are different,
and that all groupings rely on the charac-
teristic of interest to be a common influ-
ence for all groups. For example, several
North American grassland-breeding birds
also winter in South America, while others
winter in North America. Any grouping is
likely to compartmentalize only a portion
of the variation associated with the
attribute of interest (Mannan et al. 1984).
It is also likely that taxonomic similarity is
partially confounded with other possible
groups, and hence any similarities may
reflect common ancestry (Pagel & Harvey
1991).

1.2. Difficulties Associated with
Imprecise Information.

Collections of estimates of population
trend tend to differ in both estimated mag-
nitude and precision of individual esti-

mates. An imprecise trend estimate may
be quite large while still having a confi-
dence interval large enough to include
zero, indicating that the trend is not signif-
icantly different from zero. Magnitude
alone is therefore not sufficient to estab-
lish the importance of a trend estimate.
However, ‘statistical significance’ is also
a flawed criterion, because a very small
rate of change may be identified as ‘statis-
tically significant’ but be of no practical
significance. Separating notions of statis-
tical significance from magnitude of trend
has been a conceptual difficulty for exer-
cises in species prioritization. In any col-
lection of trend estimates, some are very
imprecise, some are very precise, and all
summaries of results are influenced by
these differences in estimated precision.
The consequences are:
1. Simple averages of trend estimates are

generally not good descriptors of the
collection.

2. Ranked lists of trends do not reflect the
real ranking of trends.

3. Number of species with positive trend
estimates is not a good estimate of the
number of species with positive trends.

1.3. Analysis of Collections of
Estimates

For single species analyses, we generally
consider the data Ys to be governed by a
fixed, unknown parameter θs. Statistics are
based on distribution of data, given the
unknown parameter, f(Ys|θs). For multiple
species, it is reasonable to view parame-
ters as random variables sampled from
some distribution. These multi-level mod-
els in which data and parameters are both
random variables are called hierarchical
Models. In these models data are
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observed, but their distributions are
described conditionally on realized values
of parameters that are also random vari-
ables. This necessitates that one or more
additional levels of distributional assump-
tions should be included in the analysis. 

Hierarchical models are often analyzed
using Bayesian methods. Bayes approach-
es are model-based, and are used to make
probability statements about θs (Gilks et
al. 1996). In a Bayes analysis, we define
the standard sampling distribution of the
data given the unknown parameter, or
f(Ys|θs), but also define the distribution of
the parameters in a prior, or π(θs|Ψ), where
Ψ is a represents hyperparameters that
govern the distribution of the parameters.
Bayesian inference about the θs is based
on the posterior distribution f(θs|Ys).
Unfortunately, derivation of the posterior
distribution is often difficult mathemati-
cally, limiting the use of Bayes analyses
for complicated models. Definitions of the
prior also can be controversial, because
the prior makes assumptions about the dis-
tribution of parameters.

2. Implementing Hierarchical
Models

In earlier publications, we used empirical
Bayes methods to implement a hierarchi-
cal model for species group attributes
(Link & Sauer 1995). In empirical Bayes,
hyperparameters are estimated using
information from the data. We applied a
simple model to the case of estimation of
a prior mean trend for the group, and then
we estimated posterior means of the
species trend parameters. These ‘shrunk-
en’ estimates are a weighted average of
the prior mean (the estimate of the group

mean trend parameter) and the estimated
trend. The resulting estimate for each
species is intermediate between the origi-
nal estimated trend and the prior mean,
with the actual value dependant on the rel-
ative precision of the original trend. We
used this model to re-order trends (Link &
Sauer 1996), and to estimate the number
of increasing species using a bootstrap-
ping procedure (Link & Sauer 1995).
However this approach is limited, because
quite simple models must be used.

Here, we implement a complete analy-
sis using Markov Chain Monte Carlo
(MCMC) methods, a very flexible proce-
dure for fitting hierarchical models.
MCMC is a simulation-based approach to
estimation, in which:
1. A model is defined in terms of distrib-

utions of parameters and hyperparame-
ters.

2. The distribution information for each
variable is written as ‘full condition-
als,’ distributions with all other para-
meters being fixed.

3. An iterative sampling is conducted
using these full conditionals.
This iterative procedure produces

results that converge on posterior distribu-
tions for the parameters. See Spiegelhalter
et al. (1995) or Sauer and Link (2002) for
more details of the estimation procedure.

3. Our Model

We assume that a series of n trend esti-
mates β̂s, s=1, 2,..., n, exist, and that these
estimates are normal random variables
with parameters βs and σ2

s. The estimated
variance σ̂2

s is distributed as a chi-square.
The parameter βs is distributed as a normal
distribution with hyperparameters µ and
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τ2. The hyperparameters are also assumed
to follow distributions, with µ distributed
normally (mean 0, variance=100 000), and
τ2 and σ2

s are assumed to follow gamma
distributions.

To fit this model, we used Program
BUGS (Spiegelhalter et al. 1995). In this
program, a simulation is conducted as
described above. After a large number of
iterations, the results converge on posteri-
or distributions. After this convergence
occurs, the simulation is continued and
each iteration provides a set of replicate
results based on sampling from the distri-
butions. Consequently, means and vari-
ances from the simulation results can be
used as estimates of parameters and hyper-
parameters and their variances.

3.1 Estimates Produced by our Analysis

The estimates associated with parameter βs

represent the posterior mean trend esti-
mates for individual species. These can be
thought of as precision-adjusted estimates
that are ‘shrunken’ toward the overall
prior mean estimate (µ). These numbers
are similar to the re-ordered trend esti-
mates described by Link & Sauer (1995),
but the MCMC approach better accommo-
dates imprecision in the estimates of pre-
cision than did the empirical Bayes
approach. The number of species with
positive trend estimates (NInc) are estimat-
ed directly from the MCMC results, sim-
ply by counting the number of positive
posterior mean trend estimates from each
MCMC replicate and using these as repli-
cates to obtain a mean and variance. 

3.2 Defining Population Stability

Another attribute that can be derived from

the MCMC analysis is a notion of stable
populations. Population stability has
proven difficult to define using estimated
population trends because of the difficul-
ties associated with use of magnitude of
trends, because large estimated trends may
simply be poorly estimated. However, use
of the posterior mean trends from the
MCMC accommodates the relative impre-
cision in the context of the collection of
estimates, and can be used to define a sta-
ble population. We define stability in
terms of a maximum acceptable deviation
of trend from 0, denoted as δ. The proba-
bility that population is stable can be
defined as Pr(βs∈(-δ,δ)|Y), that is, the
probability that the posterior mean is in
the interval, conditional on the observed
data Y. Given δ and a probability p, we can
estimate the probability that βs is not in 
(-δ,δ) exceeds p, or Pr(βs∈(-δ,δ)|Y)≤1-p.
This quantity can be evaluated directly
from the MCMC replicates, simply by
determining whether each replicate of βs is
in the interval (-δ,δ). The proportion of
replicates that fall outside the interval is
an estimate of p.

3.3. MCMC Analysis

The North American Breeding Bird
Survey (BBS) provides population change
data for 28 species of grassland-breeding
birds for the survey interval 1966-2000.
The BBS is a roadside survey, conducted
along secondary roads in the United States
and Canada. The 24.5-mile routes are sur-
veyed once each year, in June, and are
composed of 50 stops, at which 3-minute
point counts are conducted. Total counts
of individuals of each species summed
over the route comprise the yearly index to
abundance. Estimating trends (% change /
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year) over the survey interval using the
Route-regression trend estimates (Link &
Sauer 1994) provides estimates that differ
greatly in precision and magnitude among
species, although many species are declin-
ing. 61% of species have significant nega-
tive trends, and only 18% of species have
trend estimates >0.

From the North American Breeding
Bird Survey, we conducted the MCMC
analysis on the 28 grassland bird species
for which trends could be estimated over
the interval 1966-2000. We calculated the
posterior mean estimates βs, estimated the
number of species with positive trend esti-
mates, and calculated the probability that
each species is stable for δ=2%/year.

Species rankings are summarized in
Fig. 1, in which the trends are ranked by
size of posterior mean and the estimated
trends are displayed for each posterior
mean estimate. The posterior mean esti-
mates show less variation, especially for
the species with extreme estimates of
increases and declines. This is evident
from observation of individual species
estimates. For example, the estimated
trend for Henslow’s Sparrow
Ammodramus henslowii was -7.46%/yr,
n=155, but the posterior mean trend was 

-3.91%/yr. For Baird’s Sparrow A. bairdii
the estimated trend was -2.88, n=124, but
the posterior mean was -2.35. The popula-
tions of four species were estimated to be
unstable, using the 2% criterion and a crit-
ical value of P<0.10: Eastern Meadowlark
Sturnella magna, posterior mean trend 
-2.87, P<0.001; Grasshopper Sparrow A.
savannarum, -3.71, P<0.001; Henslow’s
Sparrow and Sprague’s Pipit Anthus
spragueii, -4.73, P=0.055. The N of
species with positive trend estimates was
5.16 species (SE: 1.216), while the naive
estimate (i.e. based on the estimated
trends) was 5. Although similar, the
MCMC estimate has a precision estimate
associated with it. In this case, the similar-
ity indicates that most species in the group
were quite precisely estimated.

4. Benefits of Hierarchical
Models

The hierarchical models described here
provide an appropriate conceptual frame-
work for dealing with collections of esti-
mates. The hierarchical structure provides
a framework for estimating attributes
associated with the parameters, and the
MCMC provides a convenient tool for
estimation. The derived attributes such as
population stability and number of
increasing species can be conveniently
estimated during the MCMC simulations.
Although some of these attributes can also
be defined using empirical Bayes meth-
ods, the MCMC approach is superior in
that it provides much greater flexibility in
defining models and implementing the
estimation. In the case described here, the
MCMC had an additional component that
accommodated uncertainty in estimation

Fig. 1. Posterior mean trends, ranked by mag-
nitude, displayed with estimated trends.
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of the variance of the estimated trends,
and our earlier empirical Bayes proce-
dures could not accommodate this source
of variation.

The population stability metric is a
useful attribute, in that it resolves the con-
sistent difficulty associated with defining
population stability based on magnitude of
estimated trends. Because estimated
trends differ greatly in precision, the mag-
nitude of the trend does not convey the
significance of the trend. Use of the poste-
rior mean estimates does accommodate the
relative precision of the estimates and is
an appropriate measure of actual magni-
tude of trend. 

We note that there are many other
applications for hierarchical models in
estimation of population attributes. We are
developing methods for estimation of pop-
ulation change using hierarchical models
that will accommodate regional variation
in precision of time series (Link & Sauer
2002). Finally, we note that although hier-
archical models are computer intensive,
they are now relatively easy to implement
in programs such as BUGS.
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